Our website uses cookies to offer you an improved user experience, to display personalized and relevant content for you. Cookies allow us to have anonymous traffic statistics on the site, through Google Analytics. Also, some pages can generate Google or Facebook cookies to show you ads with our services on other sites. You have the option not to accept the cookies placed by the website. You can express your cookie preferences here and read the site's cookie policy.

Afiseaza detalii

Hyperbaric Oxygen Therapy Of Ischemia And Reperfusion Injury

Medical information reviewed by: EMANUEL VOINEA, Fizioterapeut

i.php?p=22.Tratamentul hiperbaric cu oxi

Discover the hyperbaric medicine center opened in our clinic. Centrokinetic has the top-performing hyperbaric chamber in Bucharest, with multiple medical and anti-aging uses. The Baroks chamber has 5 seats, and operates at a constant pressure of 2.5 atmospheres, being fully automated and having protocols for each condition, and can be used individually for each patient. 

Hyperbaric oxygen therapy - benefits

Patients who use the clinic's hyperbaric therapy services benefit from:

  • The only medically accredited hyperbaric therapy chamber in Bucharest, which operates at 2.5 atmospheres (those for aesthetic use go to 1 atmosphere and have no medical benefits).
  • A safe medical procedure, without irradiation, without pain, without other side effects. 
  • The specialized medical team consists of recovery doctors, orthopedists, rheumatologists, neurologists, and neurosurgeons, meaning a multidisciplinary team specialized in all diseases that can be treated with hyperbaric therapy. 
  • Premium conditions at a fair price. Our clinic is recognized for the conditions offered and for the care of each patient. But we do not need to pay exorbitant prices to have access to quality medical services. At Centrokinetic you can find an affordable and fair price. But note that we do not have a contract with the National Health Insurance House (we do not offer state reimbursed services)

Centrokinetic is keeping contact with prestigious clinics and universities in Belgium, the Netherlands, France, and Greece to constantly update treatments to provide patients with the best medical solutions.


Ischemia-reperfusion (I/R) injury is a well-recognized phenomenon that may follow virtually any ischemic episode to tissues from interrupted blood flow, including direct traumatic tissue injuries, pressure-induced injuries, and cold injuries or burns, embolic, thrombotic, or localized inflammatory occlusion insults. It is also described following vascular or cardiovascular reperfusion procedures and post compartment syndrome fasciotomies. 

Tissue injury and/or death from this initial ischemic insult is determined by a combination of degree and duration of the occlusion and extent and type of tissue involved by the affected watershed area of capillary or arteriolar distribution. When circulation is restored, the occlusion is relieved, or the vessel is re-cannulated, a recurrent ischemic effect may occur within the following 4 to 8 hours, and cell death can continue for up to 3 days after the reperfusion. The release of endothelial chemotactic substances initiated by the original injury or insult creates an intravascular inflammatory response. 

This inflammatory response is at least partially responsible for further vascular occlusion of downstream tissues from edema. It is worsened by additional release from the second round of reactive oxygen species generated by the freshly oxygenated blood in an affected region depleted of protective free radical scavengers responding to the initial insult.

If initiated early, hyperbaric oxygen therapy has been found to ameliorate the damaging effects of reperfusion by early modulation of inflammation, maintenance of metabolic function in downstream tissues, and reintroduction of oxidation scavengers.

i.php?p=b5(1).jpg i.php?p=b2(2).jpg


The initial microvascular injury may be caused indirectly by upstream vascular occlusion or directly from a traumatic crush injury. Either mechanism results in varying degrees of endothelial insult. The initial ischemia triggers hypoxia-inducible factors (HIF) that stimulate vascular endothelial growth factor (VEGF) release, associated with the enhanced permeability of capillaries and arterioles. Neutrophil aggregation and adhesion to sensitized endothelial cells result in further cellular permeability and the relaxation of the cell-to-cell junctions (diapedesis). 

The increased permeability leads to a greater diffusion of fluid across the tissues (edema) and extracellular extravasation of leukocytes. This leukocyte activation is part of the inflammatory response, concentrating and utilizing reactive oxygen species for the phagocytic process of killing bacteria. Ischemic hypoxia drives the affected tissue into anaerobic metabolism, resulting in adenosine 5´ triphosphate depletion and decreased intracellular pH with lactic acid accumulation.

Further ischemic injury may occur at the cellular level when calcium ion efflux occurs from inactivated adenosine triphosphatases, accompanied by the opening of the mitochondrial permeability transition pore, further impairing adenosine 5' triphosphate production. Other biochemical events occur that don’t directly relate to tissue injury, but when fueled by the reintroduction of oxygen when circulation is restored, trigger a cascade event of elements that exacerbates further injury and sometimes full end-organ failure in downstream flow.

Following reperfusion, the endothelial cells in their activated state produce more reactive oxygen species but less nitric oxide, a highly effective regulator of vascular tone, leukocyte adhesion, and platelet aggregation. The mechanisms leading to reperfusion injury are complex and still not fully understood but are likely related to a combination of factors, including:

  • The rapid reintroduction of oxygen increases reactive oxygen species such as the potent superoxide anion and reactive nitrogen species (RNS), and reactive nitric oxide species (RNOS), overwhelming the already depleted source of antioxidant catalases.
  • Intracellular calcium overload with the opening of the mitochondrial permeability transition pore leads to mitochondrial swelling and apoptosis.
  • Endothelial dysfunction with a pronounced inflammatory reaction occurs.


Hyperbaric oxygen promotes the VEGF-induced enhancement of endothelial nitric oxide synthase. In addition to the scavenger effect of this antioxidant, this catalase may affect the mitogenic and anti-apoptotic actions of VEGF in preserving the integrity of the endothelium, thereby improving blood supply to the ischemic tissues. Hyperbaric oxygen therapy can reduce leukocyte adherence on the endothelium of venules and block the progressive arteriolar vasoconstriction associated with reperfusion injury.

Fragile tissues may have a greater risk of a total loss of function due to cellular apoptosis following the second hypoxic insult presented by the Ischemia-Reperfusion injury. These tissues include nervous tissue, lung parenchyma, or any other previously damaged connective tissue.

What are the effects of oxygen therapy on the body?

  • Decreases inflammation
  • Increases the body's oxygen saturation by 20-30%
  • Increases the body's immunity
  • Increases blood circulation and stimulates the formation of new capillaries
  • Decreases toxins in the body
  • Stimulates the production of new blood cells
  • Increases healing rate
i.php?p=baroks-2(3).jpg i.php?p=baroks-5.jpg

Clinical significance

Most nontraumatic ischemic events are related to vascular occlusion from atherosclerosis or other thromboembolic diseases. This risk is usually from hereditary factors that, along with advanced age and gender, cannot be controlled by preventive measures. Many associated risk factors can be controlled, often with the management of a primary care provider. Diet, activity, alteration of nutritional balance for weight loss as needed, and moderation of alcohol intake may help mitigate some additional risk. Medication may be appropriate to help diabetic patients maintain good glycemic control. 

Iatrogenic causes can also contribute to ischemic tissue occlusive events, including postoperative reactive inflammatory responses or sudden hypotensive responses to medical management. Air-gas embolisms can arise from insufflation during endoscopic procedures or delivery of anesthetic gases due to over-pressurization of poorly compliant lungs. Any of these actions may be enough to cause a vaso-occlusive occurrence.

Additional endothelial damage may occur with the complete occlusion of flow, thereby inhibiting oxygen delivery in any concentration to the affected tissue. Early intervention with oxygenated hemoglobin may mitigate some of this risk by activation and increased production of protective antioxidants such as superoxide dismutase, catalase, heme oxygenase-1, nitric oxide synthase, and heat shock proteins.

Hyperbaric oxygen therapy is a relatively safe treatment with a primary risk (greater than 1%) of barotrauma to the middle ear and sinus cavities. The only direct contraindication for treatment is the presence of a pneumothorax. The risk for treatment-induced pneumothorax, however, is less than 0.01%. The potential benefits of hyperbaric oxygen therapy outweigh the risks.

Source: https://www.ncbi.nlm.nih.gov/books/NBK513221/


Centrokinetic is the place where you will find clear answers and solutions for your motricity problems. The clinic is dedicated to osteoarticular diseases and is divided into the following specialized departments:

  • Orthopedics , a department composed of an extremely experienced team of orthopedic doctors, led by Dr. Andrei Ioan Bogdan, primary care physician in orthopedics-traumatology, with surgical activity at Medlife Orthopedic Hospital, specialized in sports traumatology and ankle and foot surgery. .
  • Pediatric orthopedics , where children's sports conditions are treated (ligament and meniscus injuries), spinal deformities (scoliosis, kyphosis, hyperlordosis) and those of the feet (hallux valgus, hallux rigidus, equine larynx, flat valgus, hollow foot).
  • Neurology , which has an ultra-performing department, where consultations, electroencephalograms (EEG) and electromyography (EMG) are performed. 
  • Medical recovery  for adults and  children , department specialized in the recovery of performance athletes, in spinal disorders, in the recovery of children with neurological and traumatic diseases. Our experience is extremely rich, treating over 5000 performance athletes.
  • Medical imaging , the clinic being equipped with ultrasound and MRI, high-performance devices dedicated to musculoskeletal disorders, and complemented by an experienced team of radiologists: Dr. Sorin Ghiea and Dr. Cosmin Pantu, specialized in musculoskeletal imaging.

Find the latest news by following the Facebook and YouTube accounts of the Centrokinetic clinic.  

Hyperbaric oxygen therapy in intestinal pneumatosis

Cystoid or cystic intestinal pneumatosis (intestinal emphysema) is a symptom that can occur in many gastrointestinal diseases. Hyperbaric oxygen therapy can be a successful treatment of cystoid intestinal pneumatosis and granulomatosis with polyangiitis.


Hyperbaric oxygen therapy in cell damage caused by radiation in gynecological cancers

Gynecological cancers treated with a combination of external beam radiation and brachytherapy, especially cervical and vaginal cancers, can result in the apex of the vagina receiving a high dose of radiation. Hyperbaric oxygen therapy has positive effects on the radiated tissues, especially the head, neck, anus, and rectum.


Hyperbaric oxygen therapy in post-radiotherapy CNS injury

Hyperbaric oxygen therapy involves the use of so-called levels of oxygen under pressure to increase the level of oxygen in the blood. The use of hyperbaric oxygen therapy involves oxygen treatment for soft tissue radionecrosis. Read this article and find out more.


Hyperbaric oxygenation vs normobaric oxygenation in CO poisoning

Prolonged CO exposure is responsible for more than half of fatal poisonings and is also one of the leading causes of poisoning in Western countries. We aimed to compare the effectiveness of therapy with hyperbaric oxygen (HBO) versus normobaric oxygen (NBO) in the setting of carbon monoxide poisoning (COP).


Hyperbaric oxygen therapy in diabetic foot

Hyperbaric oxygen therapy may be effective for Wagner's grade 3 and 4 diabetic foot ulcers and need to study the real problems with patients seeking treatment and demonstrates the need to study the real problems with patients seeking treatment. The results show that it is important to follow the treatment in order for the HBOT to be efficient.


The role of hyperbaric oxygen therapy in sports medicine

Hyperbaric oxygen is used in sports medicine to reduce hypoxia and edema and is also effective in treating stroke injuries and acute traumatic peripheral ischemia. When used clinically, hyperbaric oxygen should be considered as an adjuvant therapy used as early as possible after the diagnosis of the lesions.


Hyperbaric oxygen therapy in muscle injuries

Muscle stretches are the most common muscle injuries suffered during performance sports. Rapid recovery from muscle injury is crucial for elite athletes who regularly are exposed to training and increased competition. Hyperbaric oxygen therapy is a safe and effective method, being a non-invasive treatment


Hyperbaric oxygen therapy in sports injuries

Hyperbaric therapies are methods used to treat disease or injury using pressures higher than the local atmospheric pressure inside a hyperbaric chamber. The long-term effects are neovascularization (angiogenesis in hypoxic soft tissues), osteoneogenesis, and stimulation of collagen production by fibroblasts. This is beneficial for wound healing and recovery after irradiation.


Hyperbaric oxygen therapy in proctitis generated by radiation

Proctitis is the inflammation of the rectal mucosa causing pain, discharge, and other unusual symptoms. Pain can occur during bowel movements, it can be acute or chronic. Symptoms may vary, but the most common is tenesmus (the feeling of needing to go to the toilet), a sensation that persists even after using the toilet. This treatment should be offered to patients who fail to recover with conventional treatments for radiation-induced proctitis.


Hyperbaric oxygen therapy in refractory osteomyelitis

Osteomyelitis is an infection of the bone or marrow caused by bacteria or mycobacteria. Hyperbaric oxygen treatments can be considered an American Heart Association (AHA) Class II recommendation for the treatment of chronic, refractory osteomyelitis


Hyperbaric oxygen therapy in tinnitus

Hyperbaric oxygenation allows a controlled increase in oxygen pressure in the blood. This technique can be used in cases of tinnitus and sudden deafness, when certain changes in the inner ear and brain generate a lack of oxygen and, therefore, a limited intake of energy.


Hyperbaric oxygen therapy of ischemia and reperfusion injury

Hyperbaric oxygen therapy has been found to ameliorate the damaging effects of reperfusion by early modulation of inflammation, maintenance of metabolic function in downstream tissues, and reintroduction of oxidation scavengers.


Hyperbaric therapy in the treatment of second degree burns

HBOT has a beneficial effect on burn wound healing by reducing edema and ensuring there is adequate oxygen in microcirculation. It may speed up epithelialization and suppress unnecessary inflammation that could negatively affect normal wound healing. With further research, HBOT may become an adjuvant therapy to surgery.


Hyperbaric oxygen therapy

Hyperbaric therapy is a form of medical treatment that involves exposing the body to pure oxygen at a higher pressure than normal. There are about 45 diseases approved worldwide to be treated with hyperbaric oxygen.


Hyperbaric oxygen therapy in the management of patients with malignant otitis externa

Malignant otitis externa is a rapidly spreading bacterial infection that is aggressive and may be fatal if left untreated. Hyperbaric oxygen therapy (HBOT) is a medical treatment in which the entire body is placed in an airtight chamber at increased atmospheric pressure and has been proven to be effective for several different medical conditions.


Hyperbaric oxygen therapy in acute myocardial infarction

If left untreated, MI will lead to the progressive loss of viable cardiomyocytes, impaired heart function, and congestive heart failure. Oxygen cycling therapy serves as a very attractive option for the treatment of myocardial infarction, because it offers some of the greatest benefits while reducing treatment time and inconvenience to the subject.


Hyperbaric oxygen in ischemic ulcers

The present study has demonstrated that adjunct HBOT enhances the reduction of ulcer area and depth at 4 weeks in T2DM patients with ischaemic DFUs. HBOT is known to ensure hyperoxygenation of ischaemic tissue and restoration from hypoxia. Discover the hyperbaric medicine center open in our clinic. Centrokinetic has the top-performing hyperbaric chamber in Bucharest.


Hyperbaric therapy in femoral condylar osteonecrosis

Osteonecrosis of the knee (ONK) is a form of aseptic necrosis resulting from ischemia to subchondral bone tissue. Typically, treatment is invasive. Hyperbaric oxygen therapy (HBOT) may provide a noninvasive alternative by improving oxygenation and reperfusion of ischemic areas. This study evaluates the efficacy of HBOT in a series of ONK patients.


Hyperbaric therapy in femoral head necrosis

Femoral head necrosis (FHN), also called avascular necrosis, or femoral head osteonecrosis is a common multifactorial condition that affects patients of any age and can lead to substantial clinical morbidity. Hyperbaric oxygen therapy (HBO) is one of the proposed treatments. Indeed, tissue oxygen promotes angiogenesis that reduces edema. Read about the effectiveness of this treatment.


Hyperbaric oxygen therapy in central retinal artery occlusion

Central retinal artery occlusion (CRAO) is a devastating and common eye condition. It presents a sudden, unilateral, and painless loss of vision. Even when treated promptly, an acute obstruction of the central retinal artery usually leads to severe and permanent loss of vision.


Hyperbaric therapy in irradiated maxillofacial dental implant

There are numerous studies reported for the effectiveness of HBO in the treatment of osteoradionecrosis of various bone tissues. In addition to its usefulness in treating osteoradionecrosis, this therapy can prevent it. It also combats the negative effect of irradiation, stimulates osseointegration, and improves the survival rate of the implant.


Hyperbaric oxygen therapy in hear loss

The auditory function in the inner ear is maintained by the cochlea, which is known to have a high oxygen demand. Hyperbaric oxygen can increase the tension of oxygen in the perilymph and restore hearing in a significant number of patients with sudden hearing loss. Patients can be treated in a single-seater hyperbaric chamber or in a multiplace chamber.


Hyperbaric therapy in traumatic ischemia

Limb trauma, which leads to direct tissue damage, plus local hypoxic disorders caused by the resulting edema, causes acute peripheral ischemia. Surgical treatment and hyperbaric oxygen are not concurrent treatment modalities but are best used to complement each other in order to provide the best outcome for the patient.


Hyperbaric therapy in venous embolism

Small gas embolisms, as in this case, present serious risks, especially the complication of cerebral air embolism. To prevent neurological complications, it is necessary to urgently remove the air bubble. HBOT reduces the volume of the bubble, helps eliminate nitrogen, and improves the oxygenation of potentially hypoxic tissue. See the results of hyperbaric therapy in venous embolism.


Hyperbaric therapy in osteoradionecrosis

Osteoradionecrosis (ORN) is a common consequence of radiation provided to cancer patients. Currently, hyperbaric oxygen therapy (HBOT) has a major role in improving wound healing in patients with ORN.


Hyperbaric oxygen therapy in soft tissue radionecrosis

Discover the hyperbaric medicine center open in our clinic. Centrokinetic has the top-performing hyperbaric chamber in Bucharest, with multiple medical and anti-aging uses. The Baroks chamber has 5 seats, and operates at a constant pressure of 2.5 atmospheres, being fully automated and having protocols for each condition, and can be used individually for each patient.



See here how you can make an appointment and the location of our clinics.